Diagnostic and Treatment of Joint Diseases of Small Animals

- Updates
- Clinical Management
Introduction

- Increase of the frequency of joint diseases in dogs and cats due to:
 - Increase of life expectancy
 - More medium - large breeds
 - More obese animals
 - Increase of animal of predisposed breeds

- Difficult to accurately diagnose
Structure of Joint

Subchondral plate: « support »

Joint Capsule: ligament-like structure + synovial membrane

Synovial fluid feeds the cartilage + lubrication

Articular Cartilage « shock absorption »
The Healthy Cartilage

- **Chondrocytes:**
 - synthesis of proteoglycans
 - secretion of catabolic enzymes

 => regulation system:

 balance synthesis / degradation

- **Matrix:** shock absorption
 - 80% water
 - 12% collagen
 - 2% proteoglycans
 - other substances

Physiology of Cartilage

- Not irrigated by blood vessels
- \(\Rightarrow \) specific nutrition system: « pumping »

COMPRESSION
- rejection of waste in the synovial fluid

DEPRESSION
- aspiration of the synovial fluid

WASTE

NUTRIMENTS
Inflammatory Joint Diseases

- Very numerous:
 more than 300 are listed in the literature

- Varied causes:
 - immune mediated factors
 - microbial infection
 - secondary effect of trauma
Inflammatory Joint Diseases

- Immune mediated polyarthritis

Picture: Masahiro Okumura
Non-Inflammatory Joint Diseases

- Degeneration of joint structures, like cartilage:
 - OSTEOARTHRITIS
 - OSTEOARTICULAR DYSPLASIA
General Pathogenic Process

In case of joint disease:

- Modification of cartilage matrix homeostasis

 \Rightarrow \textit{lowering of viscoelasticity}

 \Rightarrow \textit{increase of frictions}

- This leads to degenerative disease

 = osteoarthritis (OA) = degenerative joint disease (DJD)
OA Pathogenic Process: Phase 1

- **Over-pressure**
 - on normal cartilage:
 - luxation
 - unstability of the joint
 - dysplasia
 - overweight

- OR **Normal pressure**
 - on un-normal cartilage
 - tumoral process
 - old cartilage
 - genetic malformation
 - nutritionnal troubles
OA Pathogenic Process: Phase 2

- Hyperpressure
 - Activation of chondrocytes
 - Decrease of synthesis
 - Increase of Metalloproteases
 - Destruction of cartilage Matrix
 - Release of cartilage fragments
 - PgL2
 - Inflammation
 - Pain
OA Pathogenic Process: Phase 3

Hyperpressure

Activation of chondrocytes

Increase of Metalloproteases

Destruction of cartilage Matrix

Release of cartilage fragments

Inflammation

PAIN

Synthesis of proteases

Activation of synoviocytes

IL 1 beta

IL 1 beta

IL6

TNF alpha

PgE2

+macrophages
OA Pathogenic Process: Results

- Fibrosis of the capsule
- Osteophytes
- Bone remodelling

Biochemical and Mechanical Vicious Circle
General Physical Examination

- **Interview of the owner:**
 - Sudden / slow onset of the disease?
 - Date of apparition and evolution, cyclic or permanent?
 - General mobility of the animal + specific motion of the legs?

- **Demeanour**

- **Examination of the Gait**

- **Neurological tests** (to exclude neurological etiology)
Examination of Lameness

- Focus on the attitude of the legs
- Animal walking toward you / away from you

- Permanent / intermittent lameness?

- Strides of each foot?

- Movements of joint under loading?
Orthopaedic Evaluation (1)

- Animal standing still:
 - Posture ?
 - Muscle atrophy ?
 - Muscular reaction ?
 - Pain along the spine, at the neck or the back ?
Orthopaedic Evaluation (2)

- Palpation (1):
 - Identify painful bones, ligaments, tendons
 - Abnormalities? Displacements?
 - Joints with fibrosis?
 - Pain?
 - Instability?
Orthopaedic Evaluation (3)

- Palpation (2):
 - Restriction in the motion of any leg / joint?
 - Crepitus?
 - Condition of soft tissues around joint?
 - Swelling?
Orthopaedic Evaluation (4)

- Palpation of the joint of the **elbow**

Picture: Masahiro Okumura
Orthopaedic Evaluation (5)

- Palpation of the joint of the **elbow**

Picture: Masahiro Okumura.
Orthopaedic Evaluation (6)

- Palpation of the joint of the hip
Orthopaedic Evaluation (7)

- Biodynamic tests:
 - To carry out on a sedated / anesthesied animal
 - To evaluate stability of the joint
 - Cranial drawer sign
 - Ortolani sign
 - Barden sign
Orthopaedic Evaluation (8)

- Biodynamic tests:
 - Cranial drawer sign
 - anterior cruciate ligament rupture of the knee joint

Orthopaedic Evaluation (9)

- Biodynamic tests:

 - Ortolani sign

 stability of hip joint having dysplasia

Diagnostic Imaging

- Changes in joint structure

Diagnostic Imaging: X-Ray

- Time gap between the beginning of the disease and the stage when the lesions are detectable by radiography

- All lesions may not be all related to the present disease
Diagnostic Imaging: X-Ray

- OA of elbow joint
 - Fragmented medial coronoid process

- Remodeling of the subchondral bone

Diagnostic Imaging: X-Ray

- OA of hip joint

Location of lesion detected in the radiogram
Diagnostic Imaging: X-Ray

- OA of knee joint

Diagnostic Imaging: Arthroscopy

- **Interest:**
 - direct observation of ligaments, tendons, synovial membrane, articular cartilage
 - biopsy of synovial membrane
 - excising, removing fragments
Diagnostic Imaging: Arthroscopy

- Arthroscopy of the Elbow

Picture: Masahiro Okumura...
Diagnostic Imaging: Arthroscopy

- Fragmented coronoid process of ulna

Diagnostic Imaging: Arthroscopy

- Fragmented coronoid process of ulna

 => Inflammation of the synovial membrane

Biceps tendon in the shoulder joint =>
Diagnostic Imaging: Tomography

- **X-Ray CT:**
 - excellent for detecting calcification
- **X-Ray CT 3D**
- **MRI:**
 - can show images of soft tissues like cartilage and tendon
- **Limits:**
 - cost
 - deep sedation / anesthesia required
 - resolution of the images obtained
Diagnostic Imaging: Tomography

- X-Ray CT:

 Fragmented coronoid process of ulna

Picture: Masahiro Okumura
Diagnostic Imaging: Tomography

- X-Ray CT 3D:

 Fragmented coronoid process of ulna

![Image of X-Ray CT 3D showing fragmented coronoid process of ulna](Picture: Masahiro Okumura..)
Diagnostic Imaging: Tomography

- Ultrasonography:
 - useful in detection of lesions of biceps and ligaments
 - not a practical examination for joints because of a very small acoustic window in this particular area
Tests on Synovial Fluid

- Interesting to detect and evaluate:
 - infections
 - neoplasia
 - inflammation

- Puncturing:
 - a perfect aseptia is required
 - 22-25G needle
 - 2ml syringe
Tests on Synovial Fluid

- Elements to analyse:
 - amount of fluid
 - appearance
 - cytological analysis
 - presence of PNN => inflammation
 - PNN morphology: immune disease vs. infection
 - protein content
 - bacteriological culture test
Tests on Synovial Fluid

- Amount of fluid
- Appearance
Treatment Strategy

- Conservative therapy
 - remove the cause of the disease
 - control pain and inflammation
 - protect the damaged cartilage

 => a Combined Drug Therapy is needed

- Surgical treatment
 - often last resort
 - when the control of pain becomes impossible
Conservative Therapy

- Supportive treatment:
 - Mild exercise is needed every day:
 - to maintain range of motion of joint
 - to strengthen soft tissues around the joint
 - to enhance the metabolic activity of cartilage
 - Weight control
 - to decrease the over-pressure on the cartilage
Conservative Therapy

- Purposes of drug therapy:
 - Control of **Pain**, on short and long term for animal welfare & to support cartilage physiology
 - Control of **Inflammation**
 - Modify the cartilage **Matrix Metabolism**

- Long term treatment => drugs with **minimal side effects** are required
Conservative Therapy: Drugs (1)

- **Available drugs:**
 - **NSAIDs:** oral & injectable
 - **DMOAs:** oral & injectable
 (Disease-modifying osteoarthritis agents)
 - **Steroids:** oral & injectable
 - **Morphinics:** oral & injectable
 - **Local anesthetics**
Conservative Therapy: Drugs (2)

- All drugs are complementary:

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Reduction of Pain</th>
<th>Reduction of Inflammation</th>
<th>Protection of cartilage</th>
<th>Adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAIDs</td>
<td>++, short term</td>
<td>++, short term</td>
<td>0/+</td>
<td>+</td>
</tr>
<tr>
<td>DMOAs</td>
<td>++, long term</td>
<td>++, long term</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Steroids</td>
<td>++, temporary</td>
<td>+++</td>
<td>- - -</td>
<td>++</td>
</tr>
<tr>
<td>Morphinics</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Local anesthetics</td>
<td>++++, short action</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Conservative Therapy: Drugs (3)

- IL 1 beta
- IL6
- TNF alpha

Hyperpressure
- Increase of Metalloproteases
- Release of cartilage fragments
- Inflammation
 - Activation of chondrocytes (IL 1 beta)
 - Activation of synoviocytes
 - Destruction of cartilage matrix
 - Synthesis of proteases
 - PAIN

CS
- Chondroitin Sulfate (DMOA)
- NSAID

Steroids
- Local Anesth.

Morphinics
+ macrophages

CS = Chondroitin Sulfate (DMOA)
Conservative Therapy: Drugs (4)

Drug Strategy:

- **Common case:** NSAI D (short-medium term) + DMOA (from the beginning - long term effect)

- If severe inflammation: + **Steroids** (short term)

- If severe pain still present after NSAI Ds: + **Local anesthetics** + **Morphinics**
Conservative Therapy: Drugs (5)

Available DMOAs:

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Pro</th>
<th>Cons</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| Chondroitine Sulfate | - Anti-inflammatory + chondroprotective effect

 | - The predominant proteoglycan in the matrix

 | - Carry-over effect | - Needs 2 weeks to show effects by oral route

 | | - Highly degradated in the digestive tract | - As soon as the beginning of the treatment, in combination with pain killers

 | | | - Long term management |
| Hyaluronic acid | - Lubrication role when injected in the joint | - Difficult management of injections on the long term | - Injection at the beginning of the treatment |
| Glucosamine | - Lubrication role when injected in the joint

 | - Resistant to digestive enzymes | - More structural than anti-inflammatory effect

 | | - No direct study in small animals | - Idem CS

 | | | - May be completed with NSAIDs on the long term |
Surgical Treatment

- **Arthrodesis**
 - common procedure

- **Replacement arthroplasty**
 - use of artificial materials
 - =>use for the hip joint of large dogs only

- **Excisional arthroplasty**
 - Easier, but functions reduced after surgery
 - (except for the hip)
Surgical Treatment: Arthrodesis

Articular disintegration

Picture: Masahiro Okumura...
Conclusion

- Joint diseases concern welfare and quality of life
- Easy and objective methods for diagnosis
- Treat the underlying diseases
- Restore joint function
- Combined therapy is needed for treatment, in addition to animal welfare & quality of life